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Numerical Simulation of gas-solid interfaces with large deformations

0.Yu Vorobiev, I.N Lomov
Geophysics and Global Security Division
P.O Box 808, L.-206, LLNL, CA 94550
e-mail: oleg @s90.es.1lnl.gov

Summary
A method of treatment of multimaterial interfaces on Eulerian grids is developed which works well for
mixtures of materials with diverse compressibilities and shear moduli. This makes it possible to use this
method not only for problems of gas dynamics and solid mechanics but also to model fluid-structure
interaction problems.

Introduction

Accurate treatment of gas-solid interfaces is very important for variety of problems including fluid-structure
interactions. Using Lagrangian grid offers the most natural way of modeling of moving multimaterial
interfaces. Unfortunately this approach experiences difficulty in the problems with large material
deformations because of mesh tangling and crashes. The time step controled by strongly deformed mesh
cells due to stability limit drops down and makes calculations inefficient. To continue calculations mesh

remapping is required which makes algorithm more complex and time consuming.
In Eulerian codes the grid cells may contain several materials with dramatic difference in shock impedance

(for example,gas-solid interface). When waves pass through such cells they may cause over- compression or
expansion of materials with high shock impedance if the same velocity is used for all flow components in the
cell. Instead of introducing different velocities for each component we are trying to solve solid-gas problems
by distributing total deformations amoung components according to their compressibilities and shear
modulas.

1. The system of equations of motion

The volume fraction, mass, momentum and energy conservation laws for a mixture of N materials can be
expressed in invariant form as following:
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Where f,, p,- and €, =E, ++v* are the volume fraction, density and the total specific energy of the

component 0., v- is the average mass velocity, T-is the average stress tensor. The right side of the eq(1.1)

accounts for compressibility of the flow, so that the changes in the volume of each material is proportional to

1/ K, and cause roughly the same pressure change. The terms q and w in the right side of (1) are the bulk

forces and energy sources correspondently. By summing Eq.(1.2) and Eq.(1.4)we get total mass and energy

conservations for the mixture, since 2 f, =1, and Zna =1. Parameter 7], (the third term in Eq.1.4) is a
« o

fraction of PdV work done with material o0 during the deformation to be determined below. One way of
partition of PAdV term for multifluid flow was suggested in [1], where it was represented in nonconservative
form as ngPV-V+L"£‘LV-VP )
K, p

The derivation of Eq.(2) was based on the pressure equilibrium among components. We have found that
using (2) leads to an excessive heating and acceleration of a gas adjacent to a solid when the shock wave
emerges from the solid. This is because in the numerical approximation the assumption of instantenious
pressure equilibrium is not valid, since it takes a few time steps for the pressure wave to cross a grid cell
from stability condition and materials may have deviatoric stresses and, consequently may have different

pressure even after the passage of the wave. Assuming that PdV contribution for component o is
' KP

proportional to P dV, ~ P, / K, we get 1, = f;{ P"‘ (3)

Assuming P, ~ K, we get more simple formula, which gives distribution of PdV work proportional to

masses as 1, = f,p, / p “4)

The average stress tensor is calculated as T =-K 2%"—1 +GY, T gf"‘ ; o)

where the first term in (5) represents the average pressure and the second one represents deviatoric stress.
The average bulk and shear moduli are calculated as

(34 (34

If the elastic deformation tensor B, is known, the deviatoric stress can be calculated for every component' as

Ta, = Ga(l - (I)a )B:zpa /pOa @)
where G is the shear modulas, @, is the reference porosity , p, and p,, are respectively the current and
the reference density for material .

To describe elastic-plastic behavior, we use the following equation for the unimodular tensor of elastic
distortional deformation B, [2].

. r 2 o 3 |

B.=L,B,+B,L a—g(Da'I)Ba— (B, - Brel| (8)
I" specifies the plastic response of the material and is taken to be a function of the von Mises effective stress
and the yield strength. For rate-dependent response, we used the function proposed by Swegle and Grady [3].
In (8) L- is the velocity gradient tensor , D - is it's symmenmtric part. Although we use the same velocity v for
all components, the effective velocity gradient acting in each material differs from the average velocity
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gradient I calculated for the mixture on the basis of the velocity field. We use the following formula for L,
which gives a volume conservation (z D,el=De I)

L, =L %
G

o

®

2. Numerical Integration

Since eqs.(1) are written in conservative form they can be integrated numerically on a fixed or moving grid
using Godunov's method. In the present work rectangular grid is used and all flow parameters are cell
centered. To calculate fluxes the normal velocities V", , ,, the tangential velocities V', , ,and corresponding
stresses are to be known at cell interfaces. To find these parameters linearized Riemann problem for perfectly
elastic material is solved. Because of each cell may contain several materials including vacuum, averaged
cell parameters are used in Riemann solver. In multifluid cells the multimaterial interface is reconstructed
using VOF approach similar to [4]. When both the interface orientation and the normal mass velocities V%, ,
are known the amount of each material flowing into or out of the cell can be found. When solving linearized
Riemann problem we neglect the curvature of isentropes and replace them in each point by a straight line
(see, for example, points C, B in Fig.1) Our experience shows that using such linearized Riemann solver
gives very closed results to ones obtained with the exact Riemann solver if the pressure is of the order of
Poca or less. For solids this pressure is about 1 Mbar, what is two orders of magnitude high than the material

strength. For gases the change of the sound velocity (which gives the curvature of isentropes) can be
dramatic on the same pressure scale and more accurate approximate Riemann solvers are needed (for
example, [5,6]). Special care is also required for metastable states realized in two-phase region. Using locally
linear approximation of isentropes can give negative density or unphysically high mass velocity due to the
sound velocity drop in two-phase region (see, for example, point A in Fig. where approximated isentrop AD
gives negative density). To fix this we replace release isentropes in such points by the straight line (see OA
in Fig.1) connecting zero density zero pressure point with the given point any time the density in rarefaction
becomes negative during one increment.

The velocity gradient tensor L is approximated by (10) using normal and tangential velocities found at the
cell interfaces after solving the Riemann problem (see Fig.2)

A A /i _Vi-v, -,

(10)

We split equations (1) into two different sets of equations corresponding to X and Ydirections. The
integration of the whole system of equations includes 3 steps:

I. The sweep in X (or Y) direction

II. The sweep in the other direction

III. Update of the elastic distortion tensor B, for each component by solving eq.(8) after the velocity
gradient tensor L has been approximated in two previous steps.

For the purpose of numerical stability the direction of the first sweep changes from one time step to the
other.



ICES2K Conference, August 2000, Los Angeles, USA

Pressure

gas I solid ' 4
g >
Vn

v B
t 1 t
1 Y fi—? VZ" > A,

[
3
; liquid A A
- e 2~

Fig.2 Scheme of velocity gradient tensor

calculation.The black and white arrow show the
Density tangential and normal velocities found at the cell
interfaces by solving Riemann problem.

Figl Schematic view of isentropes for different states
of matter in density-pressure coordinate plane

Demonstrative Calculations

The simplest test for gas-solid interface treatment is a plane 1D impact of solid onto gas. If the impact
velocity is high, the shock wave moving into gas can be considered as a strong one and the density behind

1 - . . .
v of the initial gas density. Results of 10 km/s impact of aluminum layer onto

the shock should approach

air at 1 bar is shown in Fig.3. The stress is constant across the interface but the pressure is different due to
the presence of deviatoric stresses in aluminum. We found that the equal distribution of specific internal
energy increment due to Lagrangian work in multifluid cells (Eq.(4)) gives almost as good results as when
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Fig.3. The pressure (dotted lines), stress, density profiles a) and b) the specific internal energy profiles for plane
impact of aluminum (on the left) on air (on the right). The impact velocity is 10 km/s. The time moments are 1- 3 ms, 2-

6ms, 3-9ms.
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are:1-3 ms, 2-6ms, 3- 9ms. Fig.5. 2D translation test: aluminum moving in the air

Eq.(3) is used. The difference can be found in energy profiles (see Fig.3.b), where simulation results
obtained using Eq.(4) are shown with dashed lines. Using Eq.(4) leads to overheating of the metal impacting
air. However, this artificial heating is one order of magnitude smaller than the melting energy even at 10
km/s impact velocity.

The second test is a shock wave coming from a solid into a gas. The energy and density profiles for this test
are shown in Fig.4.

Fig.5. demonstrates 2D simulation results of aluminum bar moving through the air in the diagonal direction
with 5 km/s. The lines of constant pressure and the material interface are shown in low left corner for the
time 1.12 ps .This test represents the most general 2D case when the velocity of the solid object is not
aligned with the grid lines.

Conclusions

We have demonstrated an effective method to introduce strength models into Godunov type hydrocodes.
Since high order Godunov methods are widely used in computational fluid dynamics due to their superiority
in treatment of flows with strong shocks and discontinuities, the present method extends these benefits to
include problems of solid mechanics and fluid-structure dynamics in the case of large deformations.The
method can be generalized to 3D by introducing an appropriate interface reconstruction algorithm.
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